Exercise in Polarized Neutron simulation using McStas

September 19, 2013

We will be using the following components: Set_pol, Pol_mirror, Pol_simpleBfield, Pol_monitor, PolLambda monitor

1 Introduction.

In McStas each neutron ray is assigned a polarization vector, P_i , which is the statistical mean of the magnetic moments taken over the ensemble of neutrons represented by the i:th ray. The scalar polarization P is the weighted mean of a set of rays:

$$P = \frac{\sum_{i} w_{i}(\mathbf{P} \cdot \mathbf{S})}{\sum_{i} w_{i}}$$

where the weights w_i are the Monte Carlo weights of the rays and the vector **S** is a reference direction, often this is just the vertical (y) direction.

1.1 Front matter

Set up an instrument with a simple source and an ideal polarizer (Set_pol) and verify that you do get the polarization you expect.

- 1. Start out with an empty template instrument
- 2. Insert a simple neutron source with a flat wavelength spectrum centered around 5 $\hbox{Å}.$
- 3. Insert an ideal polarizer Set_pol with the parameters: px=0, py=0, pz=1. This sets the polarization of all rays passing through the device exactly to 1, i.e. a perfectly polarized beam.
- 4. Verify that this works by adding a polarization monitor Pol_monitor after the polarizer (use parameters mx=0,my=0,mz=1).

If you ask for a polarization-vector |P| < 1 – what does that mean?

1.2 Polarization monitors

Set up a bank of Pollambda_monitors to monitor the X Y Z-components of the polarization vs lambda, to get a full handle on what the polarization is.

1.3 Constant magnetic field

Insert a constant magnetic field of 1 T perpendicular to the polarization direction, and monitor the wavelength dependence of the polarization downstream. First insert a field region using the Pol_simpleBfield component. For instance with parameters as follows:

```
 \begin{array}{lll} \text{COMPONENT field} &=& \text{Pol\_simpleBfield} \, (\\ & \text{xwidth} \! = \! 0.1, \text{ yheight} \! = \! 0.1, \text{ zdepth} \! = \! 1, \text{ Bx} \! = \! 0, \text{ By} \! = \! 1, \text{ Bz} \! = \! 0, \\ & \text{fieldFunction} \! = \! \text{const\_magnetic\_field} \, ) \\ \text{AT}(0,0,1) & \text{RELATIVE PREVIOUS} \end{array}
```

They key parameter is the fieldFunction which points to a C-function that returns the magnetic field as a function of of time and spatial coordinates: $\mathbf{B} = f(x, y, z, t)$. Pol_simpleBfield defines an entry "window" beyond which the magnetic field exists. To define an exit window we use Pol_simpleBfield_stop.

This defines a magnetic field volume $0.1 \times 0.1 \times 1 \text{m}^3$ where the magnetic field is constant and point in the positive y-direction. Note that by rotating either or both the start and stop components oblique field regions may be targeted.

1.4 "Real" Polarizer

Exchange the ideal polarizer with a more realistic one which uses a difference between spin-up and spin-down refelctivities in a supermirror to create a polarized beam. In McStas we use the Pol_mirror component for this. To transmit a beam polarized a beam at 5 Å we can use the following:

Also change the samDid that work

2 Spin flipper

The Mezei version of a spin-flipper is, generally speaking, nothing else than a magnet with a field of a particular direction and magnitude. Consider the gyromagnetic ratio of and a field in the direction of $b=(0\ 1\ 1)$.

The rotation angle:

```
\alpha = \omega t = \gamma B L / \nu_n \frac{l}{t} = \gamma B L \lambda / A_n; A_n = 3956 \text{ mÅ/s}; \gamma = 183 \cdot 10^6 \text{ Hz/T}
```

Can you find a combination of field region length and strength that would would flip the spin of a 5 Å neutron from the Z to the Y direction?

What happens with neutrons that are not 5 Å?

Why not turn the spin around $b=(1\ 0\ 0)$ which could accomplish the same flip? Try to find out by changing the direction and strength of the magnetic field.

3 Tabled Magnetic field

Now change the constant magnetic field in your instrument file to one which reads the field description from a file "flipfield.dat". (please find the data file on the workshop web).

Insert a tabled magnetic field in your instrument instead of the constant one, using something like the following:

```
COMPONENT field = Pol_simpleBfield(
    xwidth=0.1, yheight=0.1, zdepth=1,
        filename="flipfield.dat",Bx=0,By=1,Bz=0,
        fieldFunction=table_magnetic_field)

AT(0,0,1) RELATIVE PREVIOUS

and later in the instrument file (just as before)

COMPONENT field_stop = Pol_simpleBfield_stop(
        magnet_comp_stop=field)

AT(0,0,1) RELATIVE field
```

What happens? Take a look inside the flipfield data file to explain what is going on.