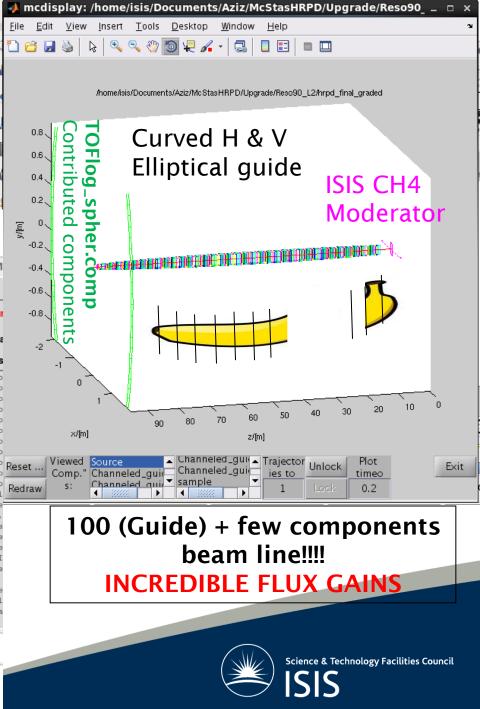
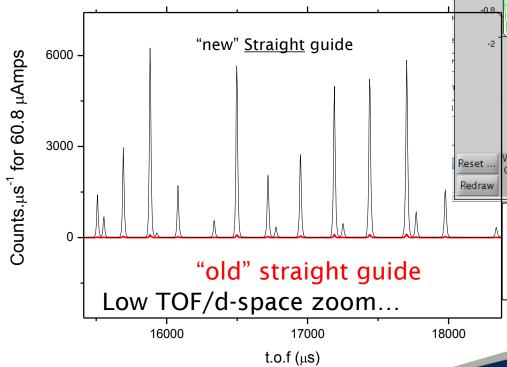

Particularities/difficulties of simulating a unconventional guide instrument


The HRPD case @ ISIS

Jordi Jacas-Biendicho <u>Aziz Daoud-aladine</u>, K. Knight, S. Hull

HRPD Upgrade –I (2008) Tapered elliptic-curved guide Laurent CHAPON (ILL) Essential Contributions:

Benchmark against analytic guides Debugged PowderN, devt of new components



HRPD Upgrade -I (2008) Tapered elliptic-curved guide Laurent CHAPON (ILL) Essential Contributions:

Benchmark against analytic guides
Debugged PowderN, devt of new components

wed Source Channeled guit Channeled guit Channeled guit Sample 1 Lock 0.2

100 (Guide) + few components beam line!!!!

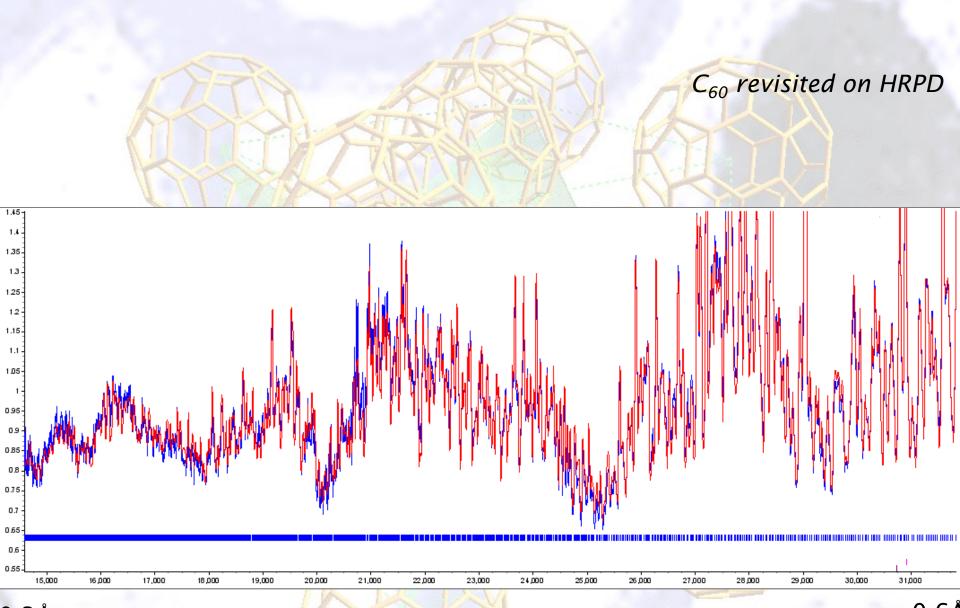
INCREDIBLE FLUX GAINS

🥠 mcdisplay: /home/isis/Documents/Aziz/McStasHRPD/Upgrade/Reso90_ 🗀

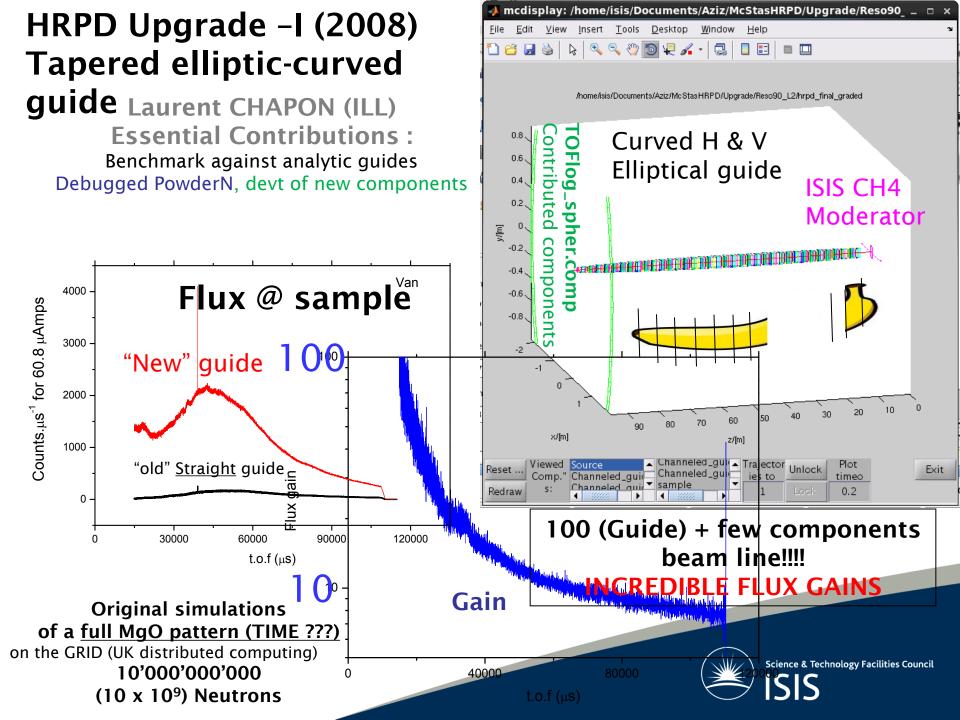
/home/isis/Documents/Aziz/McStasHRPD/Upgrade/Reso90_L2/hrpd_final_graded

Curved H & V

Elliptical guide


<u>E</u>dit <u>V</u>iew <u>I</u>nsert <u>T</u>ools <u>D</u>esktop <u>W</u>indow

ISIS CH4


Moderator

TOFlog_spher.comp
Outputs focused data in log(TOF)

These data were not observed in 1992 In 1992, there were 2100 reflections to 0.6Å In 2007, there are 17820 reflections to 0.3 Å

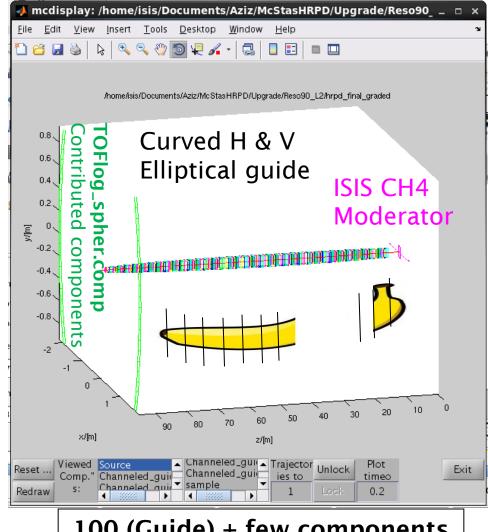
0.6

- Change detector layout to have more space therefore more Sample env. "options", radial collimation, etc.. (pb of trade/improvement flux/resolution)...

Jordi Jacas/myself: Our initial Problem Different:

First tests on my PC (4 cores 2.4GHZ) ~4h20min hours

500'000'000 neutrons


(enough for <u>dealing single peaks</u>, not full pattern)

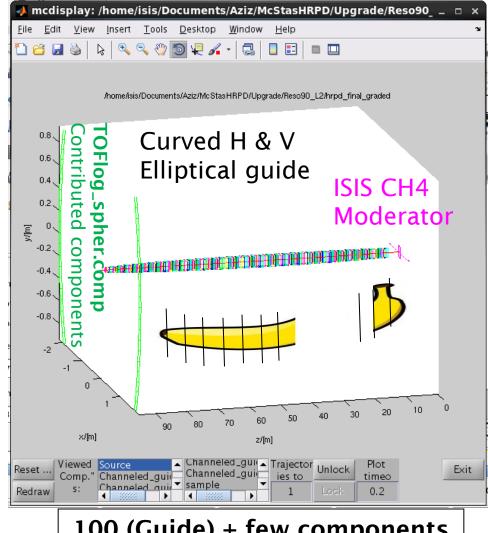
Would take ~100h

Original simulations of a <u>full MgO pattern (TIME ???)</u>

on the GRID (UK distributed computing) 10'000'000'000 (10 x 109) Neutrons

100 (Guide) + few components beam line!!!! INCREDIBLE FLUX GAINS

- Change detector layout to have more space therefore more Sample env. "options", radial collimation, etc.. (pb of trade/improvement flux/resolution)...


Jordi Jacas/myself: Our initial Problem Different:

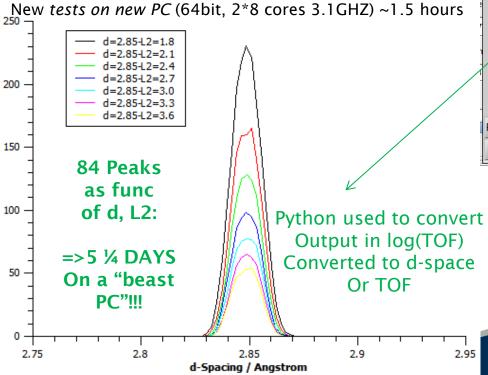
COMPUTATION RESSOURCES
Vs
COMPUTATION TIME

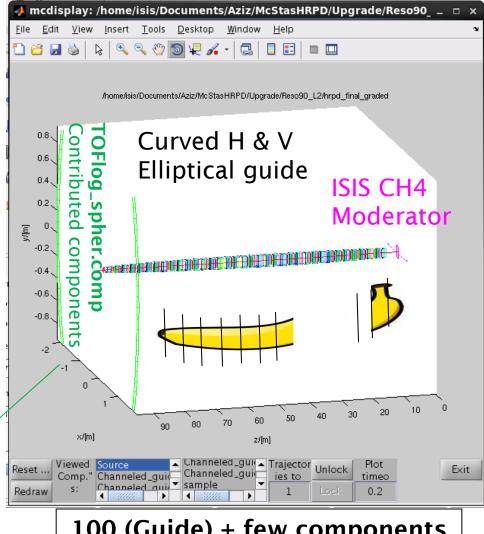
For good Stats?

Needs for Automation in the Analysis of simulated data

Fit tools?

100 (Guide) + few components beam line!!!! INCREDIBLE FLUX GAINS



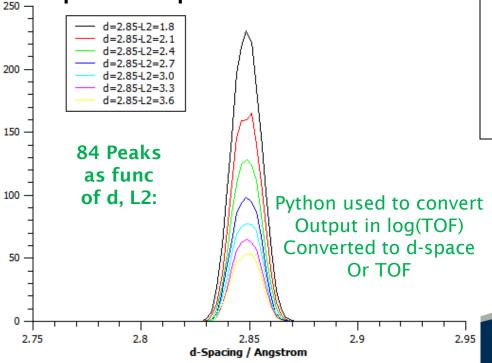

- Change detector layout to have more space therefore more Sample env. "options", radial collimation, etc.. (pb of trade/improvement flux/resolution)...

Jordi Jacas/myself: Our initial Problem Different:

First tests on my PC (4 cores 2.4GHZ) ~4h20min hours

500'000'000 neutrons & focused λ -range

100 (Guide) + few components beam line!!!!



- Change detector layout to have more space therefore more Sample env. "options", radial collimation, etc.. (pb of trade/improvement flux/resolution)...

FINAL ANSWERS: Need for Automation

in the **Analysis** of simulated data...

Fit/get and make graph/tables of params in "complex" TOF profiles funct⁰

This is not only about Monte Carlo...

WHICH TOOL TO USE?

·Tof-Xrfit in the Rietveld Fullprof Suite (easiest, but not generic and/or easy to tweak enough)?

 • MANTID (use involves debug, Needed to put constrains ⇒Biased analysis...)

· Else?

So far: more tedious than McStas!!!
Requires lots of iterated scripting & fully controlled IO, which do not exist

THIS IS THE HARDEST UNTRUSWORTHY PART

(COMPARED TO the Mc Simulation, Where the main pb is "just" speed)

d=2.85-L2=1.8

- Change detector layout to have more space therefore more Sample env. "options", radial collimation, etc.. (pb of trade/improvement flux/resolution)...

FINAL ANSWERS: Need for Automation

in the **Analysis** of simulated data...

Fit/get and make graph/tables of params in "complex" TOF profiles funct⁰

=2.85-L2=2.1 2.85-L2=2,4 Workspace fitResult101 Workspace 200 fitResult101 Workspace-Data d=2.85-L2=3.3 fitResult101_Workspace-Calc d=2.85-L2=3.6 fitResult101 Workspace-Diff 150 84 Peaks as func α ffWHM, դ"∄ $L_1 = 1.8 m$ of d. L2: 100 50 3.3e+04 3.35e+04 2.75 2.8 2.85 2.9 2.95

d-Spacing / Angstrom

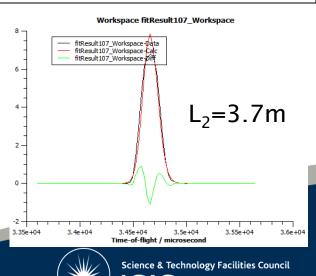
Ex: Back to back exp

$$\Omega(x) = pV(x) \otimes E(x) = \int_{-\infty}^{+\infty} pV(x-t)E(t)dt$$

$$pV(x) = \eta L'(x) + (1-\eta)G'(x)$$

$$E(t) = 2Ne^{-\beta t} \qquad t \le 0$$

$$E(t) = 2Ne^{-\beta t} \qquad t > 0$$


$$V(t) = \eta L'(x) + (1-\eta)G'(x)$$

$$E(t) = 2Ne^{-\beta t} \qquad t > 0$$

MANTID use involves debug,
 Needed to put constrains for iterative work
 Eg: need to fix η=0 (functo Gaussian not pV),
 α Very correlated to position => fixed to guess

⇒ Biased analysis…)

3.45e+04

d=2.85-L2=1.8 =2.85-L2=2.1

d=2.85-L2=3.3

d=2.85-L2=3.6

200

- Change detector layout to have more space therefore more Sample env. "options", radial collimation, etc... (pb of trade/improvement flux/resolution)...

FINAL ANSWERS: Need for Automation in the **Analysis** of simulated data...

Fit/get and make graph/tables of params in "complex" TOF profiles funct^o

Ex: Back to back exp

$$\Omega(x) = pV(x) \otimes E(x) = \int_{-\infty}^{+\infty} pV(x-t)E(t)dt$$

$$pV(x) = \eta L'(x) + (1-\eta)G'(x)$$

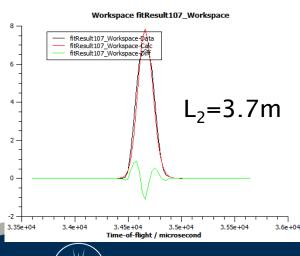
$$E(t) = 2Ne^{\alpha t} \qquad t \le 0$$

$$E(t) = 2Ne^{-\beta t} \qquad t > 0$$

$$N = \frac{\alpha\beta}{2(\alpha+\beta)}$$

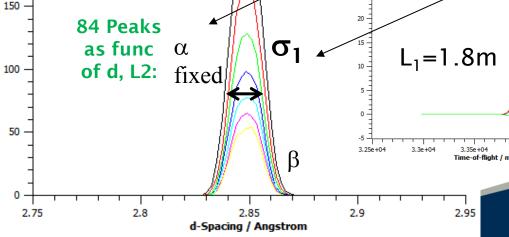
MANTID use involves debug, **Needed to put constrains for iterative work** Eg: need to **fix** η =0 (funct^o Gaussian not pV), α Very **correlated** to position => fixed to Biased analysis...)

Workspace fitResult101_Workspace


 $3.45e \pm 0.4$

3.5e+04

fitResult101 Workspace-Data


fitResult101 Workspace-Calc

fitResult101 Workspace-Diff

Science & Technology Facilities Council

- Change detector layout to have more space therefore more Sample env. "options", radial collimation, etc... (pb of trade/improvement flux/resolution)...

FINAL ANSWERS: Need for Automation

in the **Analysis** of simulated data...

Fit/get and make graph/tables of params in "complex" TOF profiles funct^o

 σ_1

2.85

d-Spacing / Angstrom

d=2.85-L2=1.8 =2.85-12=2.1

d=2.85-L2=3.3

d=2.85-L2=3.6

as func α

2.8

of d, L2: fixed

84 Peaks

200

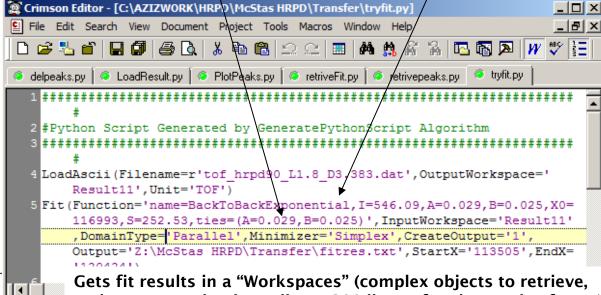
150

2.75

Ex: Back to back exp

$$\Omega(x) = pV(x) \otimes E(x) = \int_{-\infty}^{+\infty} pV(x-t)E(t)dt$$

$$pV(x) = \eta L'(x) + (1-\eta)G'(x)$$

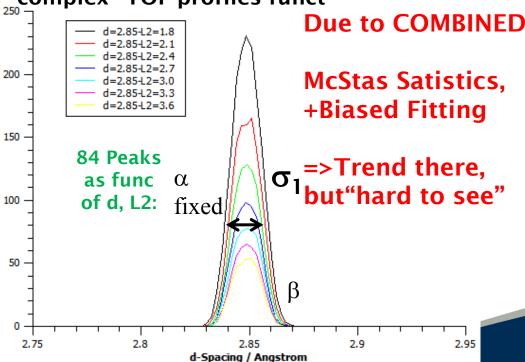

$$E(t) = 2Ne^{\alpha t} \qquad t \le 0$$

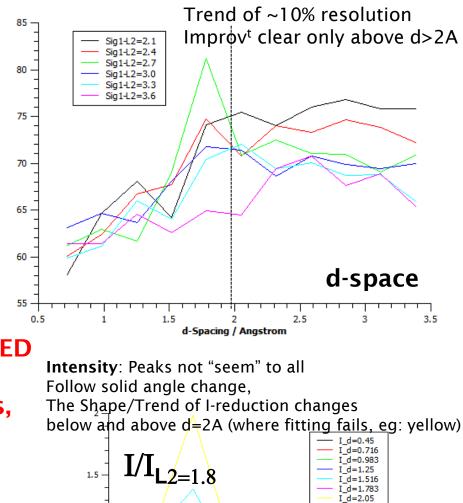
$$E(t) = 2Ne^{-\beta t} \qquad t > 0$$

$$V(t) = \frac{\alpha\beta}{2(\alpha + \beta)}$$

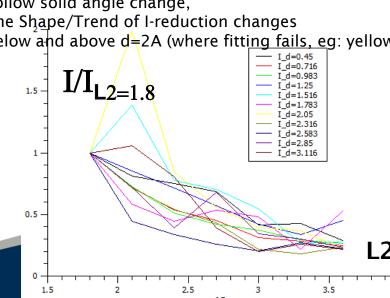
$$E(t) = \frac{\alpha\beta}{2(\alpha + \beta)}$$

MANTID use involves debug, **Needed to put constrains for iterative work** Eg: need to **fix** η =0 (funct^o Gaussian not pV), α Very **correlated** to position => fixed to quess ⇒ Biased analy⁄sis…)


and output as simple ascii => +300 lines of Python code after....)


- Change detector layout to have more space therefore more Sample env. "options", radial collimation, etc.. (pb of trade/improvement flux/resolution)...

FINAL ANSWERS: Need for Automation


in the **Analysis** of simulated data...

Fit/get and make graph/tables of params in "complex" TOF profiles funct^O

Resolution: For L2<3m

- Change detector layout to have more space therefore more Sample env. "options", radial collimation, etc.. (pb of trade/improvement flux/resolution)...

CONCLUSION

FINAL ANSWERS: Need for Automation

in the **Analysis** of simulated data...

Due to COMBINED

McStas Satistics, +Biased Fitting

=>Trend there, but"hard to see"

